#### Time Value of $CO_2e$ savings The importance of embodied $CO_2e$



**1Context & Definitions** 

2Case Study – Portola Valley Town Center

3Reducing embodied Carbon Materials Reusing Existing Buildings Size - impact on embodied CO<sub>2</sub> Carbon Dioxide (CO<sub>2</sub>) – a colorless, odorless gas 1.98kg/m<sup>3</sup>

- 1 Ton = 505 cubic meters
- 1 lb + 2.5 cubic feet

#### DEFINITIONS

| Carbon Dioxide (CO <sub>2</sub> ) | GWP = 1             |
|-----------------------------------|---------------------|
| Other greenhouse gasses:          |                     |
| Methane                           | GWP = 21            |
| Nitrous Oxide                     | GWP = 310           |
| HFC's                             | GWP = 140 to 11,700 |
| HC's – Pentane                    | GWP = <25           |
| HFO's                             | GWP = <7            |

\* Next generation of Blowing agents

## **ENVIRONMENTAL IMPACTS - BUILDING OPERATIONS**

Buildings **operations** annually in the US, are responsible for:

- 39% of energy consumption
- 71% of electricity consumption
- 12% of the fresh water
- 42 Quads of Energy (Quad = I quadrillion btu's or 7.5 gigawatts. U.S. uses about 100 Quads of energy)
- ~38% of CO<sub>2</sub> emissions

Source: A National Green Research Agenda USGBC



## **ENVIRONMENTAL IMPACTS - BUILDING CONSTRUCTION**

Building **construction** annually in the U.S. is responsible for:

- 12% of energy consumption
- 40% of non-industrial waste,
  170 million tons (2003),
  81 tons diverted
- 25% of global wood harvest
- 8 quads of energy
- 10 -12% of CO<sub>2</sub> Emissions



#### ENVIRONMENTAL IMPACTS – OPERATING / EMBODIED

Buildings operations annually in

the US, are responsible for ~38% of CO<sub>2</sub> emissions

Building construction annually

in the U.S. is responsible for **10 - 12% of CO<sub>2</sub> Emissions** 

#### ENVIRONMENTAL IMPACTS – OPERATING / EMBODIED

Buildings **operations** annually in the US. **38% of CO<sub>2</sub> emissions 300+ billion sf** 

Building **construction** annually in the U.S. **10-12% of CO<sub>2</sub> Emissions** ~10 billion sf

#### Construction Sources of CO<sub>2</sub>e

#### **Construction Materials**

Extraction, Harvest

Manufacture – primary, secondary

Transport

#### **Construction Activity**

- Equipment grading, hauling, cranes, etc.
- Labor transportation
- Energy Use tools, temp facilities





#### PORTOLA VALLEY TOWN CENTER



Design TeamMechanical – Rumsey EngineersElectrical – IDeAsPhotovoltaics – High Sun EngineersStructural – Forrell/ElsesserLandscape – Lutsko AssociatesCivil - BKF

**SIEGEL & STRAIN** Architects Goring & Straja Architects



#### **BEFORE**

| Old Town Center    | SF      | <u>% of Total</u> |
|--------------------|---------|-------------------|
| Building Footprint | 25,000  | 5.1%              |
| Paving             | 165,900 | 33.9%             |
| Playing Fields     | 96,000  | 19.6%             |
| Landscape          | 203,000 | 41.4%             |



#### AFTER

| New Town Center           | SF      | % of Total |
|---------------------------|---------|------------|
| <b>Building Footprint</b> | 20,500  | 4.2%       |
| Paving                    | 146,400 | 29.9%      |
| Playing Fields            | 100,000 | 20.4%      |
| Landscape                 | 223,000 | 45.5%      |





Total Reclaimed Lumber: 20,000 board ft. + glulams for countertops & tree trunks for columns

Additional materials recycled:

Reused on site

> all of the concrete for base rock
> all of the asphalt paving and CMU
for

winterization and trail maintenance

#### Recycled off site

> all of the rebar, pipe & misc.
 metals



SIEGEL & STRAIN Architects Goring & Straja Architects

#### PVTC - Building Materials: Weight – 1670 tons







#### PVTC - Building Materials: GHG emissions – 449 tons





#### GHG Emissions – Construction Materials - Buildings

Base Case – 449 Tons

GHG Emissions (Tons)

As Built– 386 Tons - Reduction - 63 Tons (15%)



#### GHG Emissions - Construction Materials – Buildings + Site

Base Case – 772 Tons

As Built – 645 tons - Reduction - 127 tons (17%)



#### GHG Emissions – Construction Vehicle Emissions

Base Case – 306 tons

As Built – 290 - Reduction - 16 tons (9%)



| Matorial                                                                         | Quant.     | Dist.  | Trinc | Total<br>miles | gale  | CO <sub>2</sub> | tons            | CO <sub>2</sub> | Source | Notes      |              |
|----------------------------------------------------------------------------------|------------|--------|-------|----------------|-------|-----------------|-----------------|-----------------|--------|------------|--------------|
|                                                                                  |            | miles  | mps   |                | gais. | lbs/gal         | CO <sup>2</sup> | saved           |        |            |              |
| Sitework - Grading, trenching, paving                                            | \$400,000  |        |       |                |       |                 |                 | 144             |        | .36t/k\$ 1 | EPA Estimate |
| Concrete Demo - offhaul                                                          | 1300 tons  | 20     | 137   | 2740           | 5     | 548             | 22.5            | 6.2             | -6.2   | CR         |              |
| CMU Demo - offhaul                                                               | 300tons    | 40     | 17    | 720            | 5     | 144             | 22.5            | 1.6             | -1.6   | CR         |              |
| Baserock - import                                                                | 1600 tons  | 20     | 89    | 1780           | 5     | 356             | 22.5            | 4               | -4     | CR         |              |
| Site Total                                                                       |            |        |       |                |       |                 |                 | 155.8           | 145    |            |              |
| Concrete cast in place                                                           | 660 vds    | 20     | 66    | 1320           | 5     | 264             | 22.5            | 2.95            |        | LEED sub.  |              |
| Structural Steel – 2125 miles – train                                            | ,          | 2125   |       | 2125           | 50    | 42.5            | 22.5            | 0.48            |        | 5&5        |              |
| 31.5 miles - truck                                                               | 40 tons    | 31.5   | 2     | 252            | 5     | 50.4            | 22.5            | 0.55            |        | S&S        |              |
| Wood – Engineered - Windsor, CA – 100 mi                                         | 50K bd.ft. | 100    | 10    | 1000           | 5     | 200             | 22.5            | 2.25            |        | LEED sub.  |              |
| Wood – FSC - CA & WA– 400 mi                                                     | 63K bd.ft. | 400    | 10    | 4000           | 5     | 800             | 22.5            | 9               |        | LEED sub.  |              |
| Wood – Salvaged on site                                                          | 28K bd.ft. | 400    | 5     | 2000           | 5     | 400             | 22.5            | 4.5             | -4.5   | S&S        |              |
| Reinforcing steel - 750 miles – rail                                             | 24.0 +     | 750    |       | 750            | 50    | 15              | 22.5            | 0.17            |        | LEED sub.  |              |
| 50 miles truck                                                                   | 24.8 tons  | 50     | 2     | 100            | 5     | 20              | 22.5            | 0.23            |        | S&S        |              |
| Metal Roofing - Adelanto, CA - 391 miles                                         | 12.5 tons  | 850    |       | 850            | 5     | 170             |                 | 1.9             |        | LEED sub.  |              |
| Windows - Steinbach, Manitoba – 3270 mi                                          | 4207 sf    | 3270   | 4     | 12080          | 5     | 2416            | 22.5            | 29.45           |        | S&S        |              |
| Gyp. bd Empire City, NV – 270 mi                                                 | 63 tons    | 540    | 10    | 5400           | 5     | 1080            | 22.5            | 12.15           |        | LEED sub.  |              |
| Carpet - Dalton, GA – 2450 mi                                                    | 2.5 tons   | 4900   |       | 4900           | 5     | 980             | 22.5            | 11.25           |        | On-line    |              |
| Ceramic Tile - El Paso, TX - 1160                                                | 4.4 tons   | 2320   |       | 2320           | 5     | 464             | 22.5            | 5.2             |        | LEED sub.  |              |
| Cellulose Insulation - Sac., CA – 125 mi                                         | 50 tons    | 250    |       | 1250           | 5     | 250             | 22.5            | 2.8             |        | LEED sub.  |              |
| Ceiling Tile - MN, WI, MS avg. 2,100 miles                                       | 6.4 tons   | 4200   |       | 4200           | 5     | 840             | 22.5            | 9.45            |        | On-line    |              |
| Worker commute, 17 months, 355 work days                                         | 6 workers  | 40 m/d | 355   | 85,200         | 16    | 5325            | 20              | 53.25           |        | CR         |              |
| Recycle Hauling                                                                  | 515 tons   | 20     | 80    | 1,600          | 5     | 320             | 22.5            | 3.6             |        | S&S        |              |
| Waste Hauling                                                                    | 1.4 tons   | 40     | 5     | 160            | 5     | 32              | 22.5            | 0.4             |        | S&S        |              |
|                                                                                  |            |        |       |                |       |                 |                 |                 | -16.3  |            |              |
| Building Total CO <sub>2</sub>                                                   |            |        |       |                |       |                 |                 | 150             | 145.5  |            |              |
| <sup>1</sup> Potential for Reducing GHGEmission in the Construction Sector - EPA |            |        |       | Project 7      | Total |                 |                 | 305.8           | 289.5  |            |              |

# GHG Emissions - Totals Base Case - 1,078 tons As Built - 924 tons Reduction - 144 tons (14%)



**SIEGEL & STRAIN** Architects Goring & Straja Architects

#### Portola Valley Town Center – Calculating CO<sub>2</sub>e

|      |                   | Baseline – Standard |                                  |                             | As-Built – Reduced carbon |                                  |                             | Savings                 |                                               |
|------|-------------------|---------------------|----------------------------------|-----------------------------|---------------------------|----------------------------------|-----------------------------|-------------------------|-----------------------------------------------|
|      | Material          | Quant.<br>tons      | ton CO <sub>2</sub> /<br>ton     | Total CO <sup>2</sup> / ton | Quant.<br>tons            | ton CO <sup>2</sup> /            | Total CO <sup>2</sup> / ton | Tons of CO <sub>2</sub> | Source                                        |
|      | Concrete          | 1324                | 0.13                             | 172.4                       | 1324                      | 0.07                             | 86                          | -86                     | ICE                                           |
| به   | Reinforcing steel | 51                  | 0.4                              | 21.42                       | 51                        | 0.4                              | 21.4                        | 0                       | ICE                                           |
| tur  | Wood              | 80                  | 0.45                             | 36                          | 80                        | 0.45                             | 36                          | 0                       | ICE                                           |
| iruc | Engineered Wood   | 24.6                | 0.65                             | 16                          | 24.6                      | 0.65                             | 16                          | 0                       | ICE                                           |
| S    | Structural Steel  | 10                  | 0.68                             | 6.8                         | 10                        | 0.68                             | 6.8                         | 0                       | ICE                                           |
|      | Structure Total   |                     |                                  | 252                         |                           |                                  | 166                         | -86                     |                                               |
|      |                   | <br>Weight          | CO <sub>2</sub> /ton<br>material | Total<br>emissions          | <br>Weight                | CO <sub>2</sub> /ton<br>material | Total<br>emissions          | С                       | Source of<br>CO <sub>2</sub> emission<br>data |

www.circularecology.com/ice-database.html

|          |                                |          | Baseline  |                          | R        |           |                          |         |
|----------|--------------------------------|----------|-----------|--------------------------|----------|-----------|--------------------------|---------|
|          | Material                       | Quant. t | t CO2 / t | Total CO <sub>2</sub> /t | Quant. t | t CO2 / t | Total CO <sub>2</sub> /t | t saved |
| ructure  | Concrete                       | 1324     | 0.13      | 172.1                    | 1324     | 0.07      | 86.1                     | -86     |
|          | Reinf. steel                   | 51       | 0.42      | 21.4                     | 51       | 0.42      | 21.4                     | 0       |
|          | Wood Framing                   | 80       | 0.45      | 36.0                     | 80       | 0.45      | 36.0                     | 0       |
|          | Engineered Wood                | 24.6     | 0.65      | 16.0                     | 24.6     | 0.65      | 16.0                     | 0       |
| St       | Struct. Steel                  | 9.8      | 0.68      | 6.7                      | 9.8      | 0.68      | 6.7                      | 0       |
|          | Structure Total                |          |           | 252.2                    |          |           | 166.1                    | -86     |
|          | Metal roofing                  | 12.5     | 2.50      | 31.25                    | 12.5     | 2.50      | 31.3                     | 0       |
|          | Ice and water shield           | 3.3      | 4.20      | 13.86                    | 3.3      | 4.20      | 13.9                     | 0       |
|          | Insulation – Batt              | 7.5      | 1.50      | 11.25                    | 47       | 0.04      | 1.9                      | -9      |
|          | Insulation - XPS               | 6500 bf  | 8.67      | 28.20                    | 6500 bf  | 8.67      | 28.2                     | 0       |
| e        | Insulation - Cotton            | 1.0      | 1.50      | 1.50                     | 3        | 0.04      | 0.1                      | -1      |
| <u>p</u> | Metals - Sunscreen             | 1.5      | 0.68      | 1.02                     | 1.5      | 0.68      | 1.02                     |         |
| Ne       | Fiber Cement Shakes            | 1.1      | 2.11      | 2.32                     | 2.2      | 1.80      | 4.0                      | 2       |
| Ш        | Steel Doors                    | 1.2      | 2.50      | 3.00                     | 1.2      | 2.50      | 3.0                      | 0       |
|          | Glass - double pane            | 8.32     | 0.85      | 7.07                     | 8.32     | 0.85      | 7.1                      | 0       |
|          | Alum. stile/rail doors         | 0.59     | 8.20      | 4.84                     | 0.59     | 8.20      | 4.8                      | 0       |
|          | alum. Clad frames              | 0.38     | 8.20      | 3.12                     | 0.38     | 8.20      | 3.1                      | 0       |
|          | Envelope Total                 |          |           | 107.4                    |          |           | 98.3                     | -9      |
|          | Gyp. bd.                       | 63       | 0.35      | 22.1                     | 63       | 0.35      | 22.0                     | 0       |
|          | Wood - Finish                  | 39       | 0.45      | 17.6                     | 0.0      | 0.45      | 0.0                      | -18     |
| S        | Salvaged Wood                  | 0        | 0.00      | 0.0                      | 39       | -0.67     | -26.1                    | -26     |
| she      | Ceiling Tile                   | 6.4      | 0.20      | 1.3                      | 6.4      | 0.20      | 1.3                      | 0       |
| ini      | Ceramic Tile                   | 4.4      | 1.40      | 6.2                      | 4.4      | 1.40      | 6.2                      | 0       |
| ш        | Carpet Tile                    | 2.5      | 2.30      | 5.8                      | 2.5      | 2.30      | 5.8                      | 0       |
|          | Linoleum                       | 0.4      | 1.20      | 0.4                      | 0.35     | 1.20      | 0.4                      | 0       |
|          | Finishes Total                 |          |           | 53.2                     |          |           | 9.5                      | -44     |
|          | PV System                      | 0        | 0         | 0                        | 5.5      |           | 80                       | +80     |
|          | Ducting                        | 6.0      | 1.75      | 10.5                     | 3        | 1.75      | 5.3                      | -5      |
|          | Cast Iron pipe                 | 5.7      | 1.90      | 10.8                     | 5.7      | 1.90      | 10.8                     | 0       |
| Б        | Copper Pipe                    | 1.6      | 3.00      | 4.8                      | 1.6      | 3.00      | 4.8                      | 0       |
| Σ        | Steel pipe                     | 0.4      | 2.70      | 1.0                      | 0.38     | 2.70      | 1.0                      | 0       |
|          | PEX Tubing                     | 0.5      | 4.00      | 1.8                      | 0.5      | 4.00      | 1.8                      | 0       |
|          | Wiring                         | 0.3      | 3.00      | 7.8                      | 0.346    | 3.00      | 7.8                      | 0       |
|          | MEP Total                      |          |           | 36.8                     |          |           | 112                      | +75     |
| <u>s</u> | Building Total CO <sub>2</sub> |          |           | 449.6                    |          |           | 386                      | -80     |
| ota      | Building sf                    |          |           | 23273.0                  |          |           | 23273.0                  |         |
| ₽        | lbs CO2/sf                     |          |           | 38.6                     |          |           | 33.2                     | -5.4    |

#### Portola Valley Town Center

56% - Structure 43% - As-Built

23% - Envelope 25% - As-Built

12% - Finishes 2% As-Built

8% - MEP 29% As-Built (with PV's)

#### Reducing Embodied GHG – Lessons Learned



- Tackle high volume materials first Concrete 80 tons CO<sub>2</sub> saved
- Limit energy intensive, high carbon materials XPS insulation 28 tons CO<sub>2</sub>
- Salvaged and recycled materials make a difference Wood 34 tons CO<sub>2</sub> saved
- Distance matters On-site materials 16 tons CO<sub>2</sub> saved; windows from Canada 30 tons
- Sitework matters Grading / paving vehicles 140 tons CO<sub>2</sub> (EPA Estimate)

## PORTOLA VALLEY TOWN CENTER



#### **Construction vs Operating Emissions**

#### Passive Design

- Daylighting
- Natural Ventilation
- Thermal Mass
- Well insulated shell
- External Shading
- Reflective Roofs

**Efficient Systems:** 

- Radiant Slabs 97% efficient Boilers
- Ultra efficient air conditioners SEER 19
- 100% outside air ventilation 30% above ASHRAE
- Indirect energy recovery between inlet and relief air
- 76 KW Photovoltaic roof top system
  - Low-flow fixtures waterless urinals, dual flush

#### Embodied Emissions / Operating Emissions – over 100 years Standard Building



Construction = 8% of Operating

#### Embodied Emissions / Operating Emissions – over 100 years Efficient, Low Carbon Building



Construction = 13% of Operating

#### **Embodied Emissions / Operating Emissions**

Efficient, Low Carbon Building



#### Embodied Emissions / Operating Emissions – over 20 years Efficient, Low Carbon Building



Construction = 43% of Operating

#### Embodied Emissions & Operating Emissions are additive Standard – code compliant building



#### Embodied Emissions & Operating Emissions are additive Efficient, Low Carbon Building



#### WHY FOCUS ON EMBODIED CARBON?

 Time Value of Carbon Savings Carbon saved now is worth more than Carbon later (area under the line is total carbon emitted)





**PORTOLA VALLEY TOWN CENTER** 

SIEGEL & STRAIN Architects Goring & Straja Architects

#### **Data Sources**

#### Databases

- NREL Database (US specific)
- ICE Database (Inventory of Carbon and Energy) Bath University - UK / EU / Global data
- Ecoinvent (Global / European data)
- Franklin Data (transportation of materials)

#### **Carbon Analysis Programs**

- Athena Institute- reasonably transparent
  - Assembly Calculator free
  - Impact Estimator fee for download
- SimaPro free demo, reasonably transparent
- URBEMIS free, transparent
- EPA WAste Reduction Model (WARM) free, transparent
- ConstructCO2 beta

#### LCA Tools

| Software &<br>Developer                                                                                                                                                      | Description                                                                                                                                                                                                                                                                                         | Intended Users                                                                                                                   | Impacts<br>Considered                                                                                                                                                                                         | Datasets<br>Available                                                        | Cost                                                      |                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--|--|
| BUILDING-SPECIFIC LCA TOOLS                                                                                                                                                  |                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |                                                                                                                                                                                                               |                                                                              |                                                           |                                                      |  |  |
| Athena EcoCalculator<br>for Assemblies<br>Athena Sustainable<br>Materials Institute<br>Athena Impact<br>Estimator for Buildings<br>Athena Sustainable<br>Materials Institute | Shows full life-cycle impacts from load-<br>bearing systems based on a limited<br>library of commercial and residential<br>assembly types.<br>Analyzes full life-cycle impacts from<br>assemblies and whole buildings, based<br>on region and building type; can integrate<br>energy modeling data. | Design &<br>construction<br>professionals                                                                                        | Acidification<br>Eutrophication<br>Fossil-fuel depletion<br>Global warming<br>Ozone depletion<br>Respiratory effects<br>Smog                                                                                  | North<br>America                                                             | Free                                                      |                                                      |  |  |
| eTool LCA<br>eTool<br>Green Footstep                                                                                                                                         | Analyzes full life-cycle and cost impacts<br>from whole buildings; can integrate<br>energy modeling data. Under develop-<br>ment: aims to capture more impact<br>categories and be usable worldwide.<br>Analyzes the carbon impact of a building,<br>including site disturbance, construction,      | General users<br>through LCA<br>professionals<br>Design &<br>construction                                                        | Global warming<br>Energy consumption<br>Water consumption<br>Global warming potential                                                                                                                         | Australia<br>(North America and<br>U.K. data under<br>development)<br>Global | Free-\$\$\$<br>(various<br>subscription programs)<br>Free |                                                      |  |  |
| Rocky Mountain Institute                                                                                                                                                     | and operations.                                                                                                                                                                                                                                                                                     | professionals                                                                                                                    |                                                                                                                                                                                                               |                                                                              |                                                           |                                                      |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     | GENERAL LO                                                                                                                       | CA TOOLS                                                                                                                                                                                                      |                                                                              |                                                           |                                                      |  |  |
| GaBi<br>PE International                                                                                                                                                     | Used by LCA practitioners to model life-<br>cycle impacts for a variety of products<br>and systems and even entire industries;<br>can be used for building-level LCA but not                                                                                                                        |                                                                                                                                  |                                                                                                                                                                                                               | Global                                                                       | \$-\$\$\$<br>(various<br>subscription programs)           |                                                      |  |  |
| <b>openLCA</b><br>GreenDelta                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | cycle impacts for a variety of products<br>and systems and even entire industries;<br>can be used for building-level LCA but not | cycle impacts for a variety of products LCA U<br>and systems and even entire industries;<br>an be used for building-level LCA but not professionals (many av                                                  | User-defined<br>(many available categories)                                  | Datasets must be<br>imported by users.                    | Free, but users may need<br>to purchase LCI database |  |  |
| SimaPro<br>PRé Sustainability                                                                                                                                                | designed specifically for that application.                                                                                                                                                                                                                                                         |                                                                                                                                  |                                                                                                                                                                                                               | Global                                                                       | \$ <b>-\$\$\$</b><br>(various<br>subscription programs)   |                                                      |  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                     | DATAB                                                                                                                            | ASES                                                                                                                                                                                                          |                                                                              |                                                           |                                                      |  |  |
| BEES<br>(Building for<br>Environmental and<br>Economic Sustainability)<br>National Institute<br>for Standards and<br>Technology                                              | Analyzes full life-cycle impacts from<br>generic building materials and some<br>branded building products; cost may<br>be included. Results can be viewed in<br>spreadsheet form or presented as<br>a weighted "performance score."                                                                 | Design &<br>construction<br>professionals                                                                                        | Acidification<br>Air pollution<br>Ecological toxicity<br>Eutrophication<br>Global warming<br>Habitat alteration<br>Human health<br>IAQ<br>Ozone depletion<br>Respiratory effects<br>Smog<br>Water consumption | North America                                                                | Free                                                      |                                                      |  |  |
| ICE<br>(Inventory of Carbon &<br>Energy)<br>University of Bath (U.K.)                                                                                                        | Database of 200 building materials'<br>cradle-to-gate carbon and energy<br>impacts.                                                                                                                                                                                                                 | Design &<br>construction<br>professionals;<br>software<br>developers                                                             | Embodied carbon<br>Embodied energy                                                                                                                                                                            | Global                                                                       | Free downloads of<br>updated spreadsheets                 |                                                      |  |  |
| U.S. LCI Database<br>National Renewable<br>Energy Laboratory<br>(NREL)                                                                                                       | Stores life-cycle data for a variety of<br>industrial materials and processes; can<br>be accessed by anyone and also informs<br>many of the LCA tools listed here.                                                                                                                                  | LCA<br>professionals;<br>software<br>developers                                                                                  | A variety of quantified "flows"<br>to and from nature, focusing<br>on depletion and contamination<br>of natural resources                                                                                     | North America                                                                | Free                                                      |                                                      |  |  |

#### What's Missing

We need better embodied carbon Data

- We need Baseline / average numbers for different materials
- We also need best and worst for that material
  - Manufacturer reporting
  - Third party verified
- We need data on building reuse vs new construction
- We need to measure other impacts ecological, social, health

Reducing Embodied Carbon

#### **Materials**



# WHAT MAKES A MATERIAL GREEN?

Durable lasts longer, lower life cycle impacts Renewable well managed resources, current solar income Biodegradable becomes food do more with less, resources go farther Efficient Energy efficient low embodied energy Recycled/able conserve virgin resources, and mfg. energy Non-toxic human and eco system health support local economy, minimize transport impacts local Bldg. perform. improve building performance











# WHAT MAKES A MATERIAL LOW EMBODIED CO<sub>2</sub>?

| Durable          | lasts longer, lower life cycle CO <sub>2</sub> impacts              |
|------------------|---------------------------------------------------------------------|
| Renewable        | sequesters CO <sub>2</sub>                                          |
| Biodegradable    | becomes food                                                        |
| Efficient        | do more with less CO <sub>2</sub> , resources go farther            |
| Energy efficient | low embodied energy, low embodied CO <sub>2</sub>                   |
| Recycled/able    | conserve virgin resources, mfg. energy, & CO <sub>2</sub>           |
| Non-toxic        | human and eco system health                                         |
| Local            | support local economy, minimize transport & CO <sub>2</sub> impacts |
| Bldg. perform.   | improve building performance, minimize CO <sub>2</sub>              |











#### Reducing Embodied CO<sub>2</sub>e

(lower emission materials / fewer materials?)



<u>Typical Home</u> (Full Basement)

Fiberglass Insulation Vinyl frame windows Vinyl Siding Comp shingle roofing 2x4 framing OSB Sheathing <u>15% fly-ash concrete</u>

Source: NAHB estimates based on Athena Impact Estimator, the Department of Housing and Urban Development's Utility Model and regressions developed from the Department of Transportation's National Household Travel Survey Data.

#### Reducing Embodied CO<sub>2</sub>e

(lower emission materials / fewer materials?)



#### 7.5 ton reduction

Source: NAHB estimates based on Athena Impact Estimator, the Department of Housing and Urban Development's Utility Model and regressions developed from the Department of Transportation's National Household Travel Survey Data.

#### Reducing Embodied CO<sub>2</sub>e

(lower emission materials / fewer materials?)



OSB Sheathing <u>15% fly-ash concrete</u>





<u>"Greener" Materials</u> -19.9 (No Basement)

- -3.64 Cellulose Insulation
- -1.94 Wood frame windows
- -1.77 Wood Siding
- +2.89 Steel roofing more durable
- +0.32 2x6 framing more insulation
- -1.36 Plywood
- -1.98 35% fly-ash concrete

#### 27.4 ton reduction

Source: NAHB estimates based on Athena Impact Estimator, the Department of Housing and Urban Development's Utility Model and regressions developed from the Department of Transportation's National Household Travel Survey Data.

-1.98 35% fly-ash concrete

7.5 ton reduction

Reducing Embodied Carbon

#### **Existing Buildings**



#### Annual Construction – Billions of Square Feet



# Embodied emissions over 20 years – 3.38 billion tons (4.6 billion sf new, 4.6 billion sf renovated)



#### Annual Construction – Revised



# Reduce embodied emissions over 20 years – 2.36 billion tons + reduce new construction, increase renovations



**Reducing Embodied Carbon** 

Other strange unverified theories

#### **Embodied Energy - Structure**



Giga Joules / meter<sup>2</sup>

#### **Embodied Energy - Structure + Height**





#### **Embodied Energy – Non-Structural Materials + Height**

Giga Joules / meter<sup>2</sup>

#### **Embodied Energy – Total Materials + Height**



Giga Joules / meter<sup>2</sup>

Measurement

"... the fact that careful measurement is a way of discovering new things, not just checking the status quo. Monitoring is not just a necessary handmaiden of science it is the real thing."

(Economist, March 6, 2010, "Monitoring Greenhouse Gases: Highs and Lows") Reducing Embodied Carbon

Thank You