

Carbon and Energy in Efficient Building Envelopes: A Comparative Case Study in Life Cycle Phases

Erin Moore, Assistant Professor, University of Oregon Brook Waldman, MArch 2013, University of Oregon Peter Reppe, SOLARC Architecture & Engineering

CONTEXT

UNIVERSITY OF OREGON

School of Architecture and Allied Arts

10-21-200

October 2008

CONTEXT

UNIVERSITY OF OREGON

School of Architecture and Allied Arts

School of Architecture and Allied Arts

carbon emissions Total Lifecycle Energy Use in Buildings

Variable 1: What is the grid energy mix? What if it is low on fossil fuels?

School of Architecture and Allied Arts

carbon emissions Total Lifecycle Energy Use in Buildings

Variable 2: What if this is a highly efficient building (high-performance envelope, equipment)?

School of Architecture and Allied Arts

carbon emissions Total Lifecycle Energy Use in Buildings

If this were a car, this would be the energy to make the car in the first place

and this would be the energy to drive the car for its entire life.

Materials Sooolals Operations 80-85%

School of Architecture and Allied Arts

Question: Is it worth it to upgrade the envelope of this building? I.e., do the operations savings exceed the additional material investment (measured in energy and CO_2 -equivalents)?

School of Architecture and Allied Arts

TWO OTHERWISE IDENTICAL MULTI-FAMILY APARTMENT BUILDINGS. ONE DESIGNED TO THE PASSIVE HOUSE STANDARD, THE OTHER DESIGNED TO THE EARTH ADVANTAGE STANDARD.

Primary Question

Is the Stellar Apartment Passive House Upgrade worth from an environmental impact point of view?

School of Architecture and Allied Arts

drawings from Bergsund Delaney

School of Architecture and Allied Arts

As defined by the International Organization of Standards, a life cycle assessment is a very specific set of steps for estimating the potential environmental impact of products or services.

STUDY

School of Architecture and Allied Arts

INE	TTE VERT	DE	F	G	Н	I	J	K	L	
ERIA	L TAKEOFFS	-		1						
				1						
	ATH BLD-IT	OEES SA	filled when data in row has been in	nputed into respective program					— LITE UVCIE	
1	MATERIAL	TVA .	COMPONENT	QUANTITY / DIMENTIONS	VOLUME (cu.m.)	DENSITY COEFFICIENT (kg/cu.m.)	MASS (kg)	END-OF-LIFE PROCESS, SM	NOTE	
crete	6								assume a Accoccmont	• 11 1
			Footing (4)	4 @ 1.07 cu.m.	4.28000	2403	10284.	3	ke stated ろうこうういしていい	. (L'
			Pad Below Cistern - no. 6 conc.	1 @ 130 x 30 x 30cm	0.11700	2403	281.3	2		
	4.0700		steps	1 @ 65 x 130 x Suchi W/ cutout	0.32500	2403	/81.	1 Interest Prove	assume s	
Ere	4.9720	CO. 10	90	The 65 x 100 x Socie w cutout	0.25000	2403	500.4	s iandried	mase (74 can hold tra	inc
	nang l		Tube Steel, 200mm x 100mm x	1		l I		1		1112
			4mm	8 @ 460cm	0.08832	7740	683.0	5	all steel p	
				4 @ 360cm	0.03456	7740	267.	5	all tube st	
				4 @ 240cm	0.02304	7740	178.	L .		
				2 @ 195cm	0.00936	7740	72.			
				8 @ 110cm	0.01968	7740	152.3	1		
		1393	Charl Pressley Tab	2 @ 105cm	0.00504	7740	39.	1		
			Tube Steel @ Roof 50mm x	20 W 4mm x 12cm	0.00004	7740	0.	4		
			50mm x 6mm	4 @ 453cm	0.02020	7740	156.3			/
			Contra Contra	5 @ 252.5cm	0.01452	7740	112.4	1		
		335.7		5 @ 151.4cm	0.00865	7740	67.	วี ไ		
		1	Steel Bar Legs, 50mm x 50mm x		1			1 1		
	() 	28.2	solid	4 @ 36cm	0.00360	7740	27.1	3	check leny	
		1755.6	Steel Tube Deck Support	864 linear cm x 4 square cm	0.00346	7740	26.	7 "recycling" - dummy process	matorial a	ad.
Ste	el Hardware			Rmm wolded et ut or coll-tapping			8	1	— IIIaleilais ai	IU
			Screws (Wood to Steel)	screws @ 30cm o.c		7740	0.		oo difficu	
		not includ	ad Nails	deremp er doom d.e.		7850	0.	NA	po difficu	
	(i1)	1	Coat Hooks, 10mm Steel Rod	5 @ 7.5cm	0.00003	7850	0.	"recycling" - dummy process	oled stee an argy (in n	i itc
r Ste	el Parts			*					energy (inp	uus
			Steel Roof Gutter	.875cm x 65.5cm x 480 linear cm	0.02407	7740	186.	3	3, a4.1	
			Secondary Roof Scupper	.875cm x 24.25cm x 497 linear cm	0.01055	7740	81.0	3	4, a4.2	
		401.7	Roof Panel Clip @ Ends of Lexan	4 @ 480 linear cm	0.01728	7740	133.			
			Plate Steel Floor, 5mm	1.45 square meters	0.00730	7740	56.	"recycling" - dummy process		
-		not includ	6" Diam Stainless)	15 guage @ 200 linear em	0.00288	7740		100	spec snoe	
			Elug to Erame Steel Strep	3cm x 87cm x 6mm	0.00235	7740	23.	"recycling" - dummy process		I
			Flue Cap		0.00010			a data in process	nable to processes a	na
		not includ	ed Stove Combustion Air Intake					NA	1.a2.4 processes a	110
		167.34	Stove - Steel	spec. sheet	na	na	143.0	recycling" - dummy process		
1										
			Exposed Steel	Black				4	- associated	
			Prywd, Floor/Ceiling - Water-based							
			Voneer Rheud Deek - Matte Black	50 equate cm				- 1	man denés	_
		not includ	Veneer Plywd, Vanity - Foam	as squal b sin				NA	impacts lus	ing
er Pl	lywood	and a realized	the range of the						iffering d IIIIDACLS LUS	IIIR
Ť			Flooring, 23mm	7.9 square meters	0.18160	600	109.0		note on al	0
	0.2079	124.7	Substrait Below Stl. Plate, 18mm	1.46 square meters	0.02628	600	15.	3	subtract n	
			Desk	2 @ 240cm x 44cm x 2cm	0.02112	600	12.	7	inductry	
			Bench Base	55cm x 185cm x 2cm	0.02035	600	12.	2	muustiy	
			Bed Frame	72cm x 185cm x 2cm	0.03996	600	24.1	의	/	
			Countertop, 4cm	0.1748 square meters	0.00699	600	4.	-		
	0.0926	55.5	Backsplash, 4cm	9.4cm deep, 112 cm long	0.00420	600	2.		- aggregated	da
4	0.5249		veneer Plywood Celling, 12mm	12 layers @ 9.35 square meters	0.22440	600	134.	municipal incinerator	aggiegaleu	ud
									00 0	

School of Architecture and Allied Arts

MODEL

- SimaPro
- Life cycle inventory data mostly from EcoInvent databases
- Modeling our replacement schedule and data point choices after the 2012 Oregon Department of Environmental Quality study "A Life Cycle Approach to Prioritizing Methods of Preventing Waste from the Residential Construction Sector in the State of Oregon" that was conducted by Quantis.

School of Architecture and Allied Arts

Earth Advantage

Hybrid Prescriptive- and Performancebased Standard

• 10-15% increase in energy performance beyond code (by modeling)

Passive House

Strict Performance-Based Standard

- Highly insulated, airtight building shell
- Very Low Annual heat requirement
- Very Low Primary Energy Use
- ≤ 120 kWh/m²/year (38.1 kBtu/sf/yr)

Primary Question

Is the Stellar Apartment Passive House Upgrade worth it from an environmental impact point of view?

School of Architecture and Allied Arts

School of Architecture and Allied Arts

parts added

20" Mineral Wool Insulation in Attic, R-73.2

"Advanced Framing" 2x6 wood stud framing, 24" o.c.

SIGA Air-Sealing Tape at Plywood Sheathing Joints

5.5 inches Blown-in Fiberglass Insulation in Stud Wall Cavity

2.5 in. of Exterior Polyisocyanurate Rigid Foam Insulation

Double Glazed, Low-e, Argon-Filled 'Heat Mirror' Windows

Envelope

School of Architecture and Allied Arts

parts removed

Trickle Vents to Supply Make-Up Ventilation Air

> Electrical Resistance Wall Heaters

parts added

Heat Recovery Ventilators (HRV)

Duct work from HRVs to individual rooms

Electrical Resistance In-line Duct Heaters

Mechanical

The additional materials will be responsible for emitting **50 MT CO**₂**e**

as a result of the Passive House Upgrade.

The additional materials will be responsible for emitting **50 MT CO₂e**

as a result of the Passive House Upgrade.

The improved operations will be responsible for a reduction of **1,030 MT CO_2e** of emissions as a result of the upgrade.

School of Architecture and Allied Arts

Overall, the building's emissions will be reduced by **980 MT CO_2e** as a result of the upgrade.

Is the Passive House upgrade worth it from an environmental impact point of view?

School of Architecture and Allied Arts

Payback Time on Energy and Emissions "Investments"

IMPLICATIONS

School of Architecture and Allied Arts

Insulation Material	R-value R/inch	Density Ib/ft³	Emb. E MJ/kg	Emb. Carbon kgCO2/kg	Emb. Carbon kgCO ₂ / ft ² •R	Blowing Agent (GWP)	Bl. Agent kg/kg foam	Blowing Agent GWP/ bd-ft	Lifetime GWP/ ft²•R
Cellulose (dense-pack)	3.7	3.0	2.1	0.106	0.0033	None	0	N/A	0.0033
Fiberglass batt	3.3	1.0	28	1.44	0.0165	None	0	N/A	0.0165
Rigid mineral wool	4.0	4.0	17	1.2	0.0455	None	0	N/A	0.0455
Polyisocyanurate	6.0	1.5	72	3.0	0.0284	Pentane (GWP=7)	0.05	0.02	0.0317
Spray polyure- thane foam (SPF) – closed-cell (HFC-blown)	6.0	2.0	72	3.0	0.0379	HFC-245fa (GWP=1,030)	0.11	8.68	1.48
SPF – closed-cell (water-blown)	5.0	2.0	72	3.0	0.0455	Water (CO ₂) (GWP=1)	0	0	0.0455
SPF – open-cell (water-blown)	3.7	0.5	72	3.0	0.0154	Water (CO ₂) (GWP=1)	0	0	0.0154
Expanded polystyrene (EPS)	3.9	1.0	89	2.5	0.0307	Pentane (GWP=7)	0.06	0.02	0.036
Extruded polystyrene (XPS)	5.0	2.0	89	2.5	0.0379	HFC-134a ¹ (GWP=1,430)	0.08	8.67	1.77

1. XPS manufacturers have not divulged their post-HCFC blowing agent, and MSDS data have not been updated. The blowing agent is assumed here to be HFC-134a.

[Environmental Building News]

School of Architecture and Allied Arts

IMPLICATIONS

School of Architecture and Allied Arts

emissions from materials manufacture and building construction emissions from building maintenance and operations emissions/year construction phase use phase