To Build or Not to Build Quantifying Environmental Value

A Presentation by Cherilyn Widell, Seraph LLC for NESEA Boston, Massachusetts March 7, 2014

Our Study:

Demonstrating the Relative Cost-Benefits of Reusing Historic & Non-Historic DoD Properties

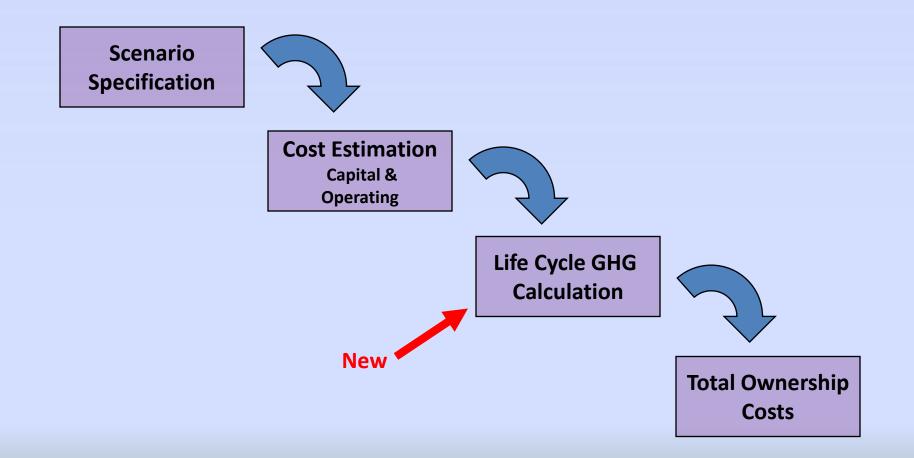
Funded by:

Department of Defense Environmental Security Technology Certification Program (ESTCP)

Legal and Policy Framework

- National Historic Preservation Act of 1966 (Amended)
- Energy Policy Act of 2005
- Energy Independence and Security Act of 2007
- Executive Order 13423: Federal Environment, Energy, and Transportation Management (2007)
- Executive Order 13514: Federal Leadership in Environment, Energy, Economic Performance (2009)

Facilities Context


- The Department of Defense owns 345,000 buildings
- 105,000 of them are over fifty years old
- 42 % of US carbon emissions come from existing buildings (DOE)

What the Study Looked at

- 1. Modernization costs of Pre-World War II Masonry Buildings compared to new construction
- 2. Life cycle energy costs achieved through modernization at a LEED Silver level compared to new construction
- 3. Scope 1,2 and 3 GHG savings associated with the reuse of Pre-World War II Buildings
- 4. Impact on project Net Present Value (NPV) of monetizing Greenhouse Gas Emissions (GHG) in Total Cost of Ownership analysis
- 5. Project cost and GHG differences by varying historic preservation and anti-terrorism force protection intervention
- 6. Challenges associated with replicating our approach

A New Step for TOC Analysis

PROJECT TEAM MEMBERS

CO-PRINCIPAL INVESTIGATORS:

David Shiver, Bay Area Economics (BAE) and **CherilynWidell**, Seraph LLC

Study Team:

Patrick Sparks, P.E. Sparks Engineering, Inc.

Douglass C. Reed, Preservation Associates, Inc.

Jennifer Martin and Rachael Terada, Center for Resource Solutions

Paul Neidinger, Architect

Roger Catlett, P.E. Comfort Design, Inc.

Applicable design standards include:

- ✓ Whole Building Design Guide
- ✓ UFC 1-200-01 General Building Requirements
- ✓ UFC 4-610-01 Administrative Facilities
- ✓ UFC 1-900-01 Selection of Methods for the Reduction, Reuse and Recycling of Demolition Waste
- ✓ UFC 3-310-04 Seismic Design for Buildings
- ✓ DoD Minimum Antiterrorism Force Protection Standards for Buildings
- Secretary of Interior's Standards for Rehabilitation of Historic Buildings

BUILDING SELECTION CRITERIA

- ✓ Non-residential
- "Typed" historic/non-historicDoD buildings
- ✓ Pre- World War II
- ✓ Masonry
- Cohesive technology (avoid buildings with additions)
- ✓ Climate variability

ORIGINAL DESIGN INTELLIGENCE

Built-in green design characteristics which contribute to an ability to naturally conserve energy

- ✓ Durable materials
- $\checkmark\,$ Natural lighting and ventilation
- ✓ Heat wells
- \checkmark Open floor plans
- ✓ Site orientation
- ✓ Basements
- ✓ Tall ceilings
- ✓ Plaster walls

FORT BLISS BUILDINGS 1 AND 115

Building 115 1911 Barracks

Building 1 1906 Hospital

ST. JULIENS CREEK ANNEX Buildings 61 and 168

Building 61 1917 Warehouse

Building 168 1941 Warehouse

F.E.WARREN AIR FORCE BASE (NHL) BUILDINGS 222 AND 323

Building 222 1906-1909 Barracks Building 323 1906-1909 Stables

DoD Building Treatment Terms

- "Adaptive reuse & rehabilitation" are terms of art outside DoD
- The DoD term for "major rehabilitation" is "modernization"
- Modernization means: "the alteration or replacement of facilities solely to implement new or higher standards to accommodate new functions or to replace a building component that typically lasts more than 50 years."
- This study compares the costs and GHG of modernization with new construction

Building Scenarios

Sustainment/Status Quo

• Formulated for measuring baseline energy consumption

Demolition and New Construction

• LEED Silver certifiable construction – 2009 LEED for New Construction and Major Renovations

Full Modernization with Strict Application of Historic Preservation Standards (HPS)

- Full modernization with a strict application of the Secretary of the Interior Standards for Rehabilitation and other DoD facility design standards including
- LEED Silver

Full Modernization with Strict Application of ATFP

- Full rehabilitation/modernization but with strict application of Antiterrorism Force Protection requirements , seismic and other DoD facility design standards
- LEED Silver

GHG Calculators

Scope 1: Direct energy use on site

• World Resources Institute, GHG Protocol

Scope 2: Purchased energy not controlled onsite

• World Resources Institute, GHG Protocol

Scope 3: New building materials

- Building for Environmental and Economic Sustainability (BEES)
- Athena Institute, EcoCalculator
- Economic Input-Output Life Cycle Assessment Model (EIO-LCA)

Scope 3: Transportation for demolition and waste disposal

• World Resources Institute, GHG Protocol

GHG SCOPE CALCULATOR

CO2 analysis for Building 222 Scenario 2: Demo and New Construction

FOUNDATION	S AND FOOTINGS					121,059
Foundation Wall	Cast-in-place concrete (R-7.5XPS Continuous insulation)		Sqft	8.92	Athena	-
	Cast-in-place concrete (R-7.58PSContinuous insulation)	5,130	Sqft	8.73	Athena	44,785
	Concrete block (R-7.5XPS Continuous insulation)		Sqft	15.33	Athena	-
	Concrete block (R-7.5EPS Continuous insulation)		Sqft	15.14	Athena	-
Foundation Slab	4" Poured Concrete Slab	10,530	Sqft	4.05	Athena	42,752
footing	Poured Concrete Footing	99	Volume (yd3)	338.61	Athena	33,522
Concrete Repairs						
	Epoxy/adhesives for concrete repairs	-	\$	1.18	BO-LCA	-
	Concrete leveling		\$	1.190	BIO-LCA	-

Total kg CO2e for Building 222 Scenario #4 Full Modernization w/ appropriate design exceptions = 121,059 kg

Athena EcoCalculator was primary source; updated Athena tool is Impact Estimator

Demolition and Weight Analysis

Each scenario requires a demolition cost estimate with materials weight analysis, a sample for HVAC:

#	Description Reference		Weigh	nt	
1	Outdoor chiller	Trane	3900.00	lbs	
2	Attic make up air unit	Trane	1900.00	lbs	
3	12 heaters in attic for attic	100 lbs. ea.	1200.00	lbs	
4	4 exhaust fans	50 lbs. ea.	200.00	lbs	
5	Piping		5000.00	lbs	
6	27 fan coil units	150 lbs. ea.	4050.00	lbs	
7	Duct work metal		5626.00	lbs	
8	Add 20% for small accessories			lbs	
9		Total weight	26251.20	lbs	
10	Total weight in tons 13.13 tons				
11	Ibs/SF for HVAC demo (30,876 SF) 0.85 Ibs/SF				0.85 lbs/SF

Weight data translates into truck trips for GHG calculation for demolition related activities

Findings: Cost Effectiveness

 Pre-War Buildings can be cost effective compared to new construction on a Total Cost of Ownership basis (w/ and w/o factoring GHG)

✓ Example: Building 115 at Fort Bliss:

	Life Cycle Cost			
Installation/Building/Project Alternative		Present Value GHG (a)	% Difference from New Construction	
Fort Bliss				
Building 115				
FTBL 115-02: Demolition and New Construction	\$	4,956,278	NA	
FTBL 115-03: Modernization with HPS	\$	3,791,391	-23.5% (k	
FTBL 115-04: Modernization with Full AT/FP	\$	4,009,546	-19.1% (b	
Notes:				
(a) Incorporates CO2e monetary value on a per MT to	oasis.			
	=			
Sources: Seraph LCC; BAE Urban Economics, Inc.	2012.			

Findings: Energy Performance

- ✓ Modernization of Pre-War Buildings can achieve comparable levels of energy consumption as new construction at LEED Silver level
- "Original design intelligence" features contribute to existing building performance
- ✓ **Example:** Building 222 at F.E. Warren:

	MT CO2e Emissions (a)					
Installation/Building/Project Alternative (b)	Scope 1	% Difference from New Construction	Scope 2	% Difference from New Construction		
F.E. Warren						
Building 222						
FEW 222-02: Demolition and New Construction	5.0	NA	6,121	NA		
FEW 222-03: Modernization with HPS	3.2	-36.9%	6,063	-0.9%		
FEW 222-04: Modernization with AT/FP	5.6	11.2%	6,072	-0.8%		

Sources: Seraph LCC; BAE Urban Economics, Inc., 2012.

Findings: Total GHG Impacts

- ✓ On a life-cycle GHG basis, Pre-War Buildings generate less total GHG compared to new construction
- ✓ GHG savings from initial construction (Scope 3) is the driver of this result
- ✓ **Example:** Building 222 at F.E. Warren:

	MT CO2e Em	issions (a)		
Installation/Building/Project Alternative (b)	Scope 3	% Difference from New Construction	TOTAL	% Difference from New Construction
F.E. Warren				
Building 222				
FEW 222-02: Demolition and New Construction	2,320	NA	8,445	NA
FEW 222-03: Modernization with HPS	1,070	-53.9%	7,136	-15.5%
FEW 222-04: Modernization with AT/FP	1,446	-37.7%	7,524	-10.9%

Sources: Seraph LCC; BAE Urban Economics, Inc., 2012.

Life Cycle Cost Analysis

• While GHG tons significant, incorporating GHG monetary value has small effect: 1.5 to 2% on LCCA

Findings: Replication of Demonstration

- No off-the shelf carbon calculator that integrates
 Scope 1, 2, & 3 emissions
- Existing calculators oriented to new construction, not historic rehabilitation or modernization
- Need easy cross-walk between cost estimation systems and carbon calculators
- ✓ Conclusion: not ready for "prime time"

Key Findings ESTCP SI 0931

Modernization of DoD's Pre-War @ Buildings masonry buildings can be significantly less expensive than new construction.

DoD's LEED Silver standard can

be met at less cost with modernization and Pre-War

Buildings can contribute

significantly to DoD's goals of lowering GHG emissions.

By leveraging original design

features for thermal comfort

- ("original design intelligence")
- with new, energy-efficient
- buildings systems, DoD can
- modernize Pre-War Buildings to
- match the energy performance
- of new construction.

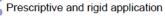
Mission critical facility requirements can be fulfilled through the adaptive reuse and modernization of Pre-War Buildings.

Historic buildings should be

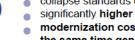
- considered a valuable asset and their reuse and
- modernization should be
- integrated into installation
 - master plans.

Prescriptive and rigid application

- of AT/FP and progressive
- collapse standards can result in
- modernization costs and at
- the same time generate higher
- levels of Scope 3 GHG
- emissions than carefully specified AT/FP treatments.


Recommended Actions

Military planners should explore ۲


- modernization and repurposing
- of Pre-War Buildings before
- considering new construction to
- meet installation mission
- requirements.

Military service procurement procedures should be reviewed and revised to ensure selection and use of contractors with experience and knowledge of historic structures.

- DoD's MILCON and SRM
- funding programs should be
- reviewed and revised to avoid
- piece-meal improvements to
- historic structures and instead provide for full modernization.

- of AT/FP and progressive
- collapse standards should be
- avoided. Greater emphasis on installation-wide security
- measures can lower AT/FP
- compliance costs for historic,
- and other existing structures.

Recommendations

- Incorporate life-cycle GHG emissions analysis into DoD Military Construction (MILCON) and Sustainment Restoration and Maintenance (SRM) programs
- Give more emphasis to existing buildings as a viable project alternative to meet mission requirements
- Give more emphasis to existing buildings as a viable project alternative to reduce GHG emissions

More Recommendations

- Invest in formulation of carbon calculator system ; current process not yet ready for "prime time"
- Place more emphasis on existing buildings to meet energy reduction goals
- Avoid modernization treatments that result in loss of original energy saving design features in Pre-War Buildings ; original design intelligence contributes to energy savings

MORE INFORMATION?

CherilynWidell, Principal, Seraph LLC cwidell809@yahoo.com 443-480-2862

David Shiver, Principal, BAE Urban Economics, Inc. dshiver@bae1.com ⁵¹⁰⁻⁵⁴⁷⁻⁹³⁸⁰

Report Website: The full report, <u>Demonstrating the Environmental & Economic Cost-Benefits of</u> <u>Reusing DoD's Pre-World War II Buildings</u> can be found at the following link <<u>http://www.serdp.org/Program-Areas/Energy-and-Water/Energy/Conservation-and-</u> <u>Efficiency/EW-200931/EW-200931</u>>

QUESTIONS, PLEASE!

