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NESEA is a registered provider with the American Institute of
Architects Continuing Education Systems. Credit earned on
completion of this program will be reported to CES Records
for AIA members. Certificates of Completion for non-AlA
members will be mailed at the completion of the conference.

This program is registered with the AIA/CES for continuing
professional education. As such, it does not include content
that may be deemed or construed to be an approval or
endorsement by the AIA of any material of construction or any
method or manner of handling, using, distributing, or dealing
In any material or product. Questions related to specific
materials, methods, and services will be addressed at the
conclusion of this presentation. oy,
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* If you think spec sheets tells you everything you need
to know about the thermal performance of insulation,
think again. You also need to know the science behind
insulation. In this session two building science experts
with a half-century combined experience review how
insulation works (foam and fibrous) and explore how
factors such as temperature, density and air infiltration
impact thermal performance. You will come away with
field-tested knowledge you can immediately apply to
your projects.
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* |dentify the reasons for employing thermal insulation
* Understand its basic heat transfer principles

e QOutline the heat transfer modes that take place in
insulation and how they are relevant

* Understand how fiberglass is engineered to deliver
outstanding insulation value

 The importance of insulation moisture performance.

 Understand the big impact of in-situ conditions to
deliver insulation performance

 Expand understanding of Temperature dependency on
insulation performance
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Physics to the Field™

Basic Performance Attributes



el
= \i\;rJ
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Insulation

1. Provides comfort

2. Controls surface temperatures

3. Reduces energy use, operating costs, and pollution
4. Saves distribution & heating plant costs
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Uninsulated Cavity INSIGHTS
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 Toillustrate how
insulation works, let’s
first consider an
uninsulated cavity in a
building.

Thot Tcold . Alr IS very tr.an.sparent to
infrared radiation

* A building cavity
without insulation is not
empty - air fills it and
can move freely
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Thot

T i T i

cold

Cavity walls have emissivity

Warmer surface emits more
than colder surface

Thermal Radiation

Uninsulated Cavity: Radiation mgr;&s&rs%éfg
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e The intensity of the thermal radiation
exchange depends on the following properties
of the surfaces
— Temperatures
— Emissivities
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Physics to the

Uninsulated Cavity: Convection ?ﬂ%’?&ﬁ?‘éé\ﬁé

Colder air i1s denser than
warmer air

N

Thot T

cold
Recirculation

U Natural convection
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Natural Convection ‘fﬁ%’,“&sﬂﬁ%%@%%s

e The intensity of the natural convection
exchange depends on the following properties
of the surfaces

— Temperatures
— Geometry
— Cavity orientation



Uninsulated Cavity
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e Radiation (~75%)

 Convection (~25%)

e Total ~ 190 W/m?
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* Low emissivity materials, such as polished aluminum.

* By reducing the emissivity of the surfaces, thermal
radiation exchange is significantly reduced.

e But it does not affect natural convection.
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Add Fibrous Insulation ?ﬁ%’f&sﬂﬁ%%@q\z;
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Fibers have two roles:

 Absorb and scatter thermal radiation; increase
radiation extinction coefficient.

 Reduce the air permeability of the cavity; air
encounters obstacles to move.
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Fibers

 Absorb and scatter thermal radiation;
increase radiation extinction coefficient.

* Reduce the air permeability of the cavity; air
encounters obstacles so it does not move.
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e Conduction (~75%)

conduction

e Radiation (~25%)
T h Ot radiation T

cold
e Total ~7 W/m?

Heat flux is reduced by 96%
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e Glass is a better thermal conductor than air

 Why adding glass (increasing density) improves the
thermal performance?

 An R-15 batt has a higher density than an R-13 batt.

— It is the infrared radiation effect — more glass, more
absorption and more scattering.

— Yes, conduction through the glass increases, but much less
than the decrease in radiation.
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Apparent Thermal Conductivity
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* Fiber diameter
* Glass chemistry

e Fiber orientation

By carefully engineering the fibers, we make the best insulation
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* Cellulose = shredded newsprint

* SPF = manufactured in-situ
— Temperature and humidity
— Spray rigs
— Installer
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* The higher the temperature, the higher is the infrared
radiation exchange through the insulation.

e Additionally, air conduction is also higher at higher
temperatures.

* Thus, one should expect a lower thermal resistance at

higher temperatures and a higher thermal resistance at
lower temperatures.

 This is also true for foams.
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What about the R-value? mg?&ﬁ#cg@q\j;
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* |tis a way to compare different insulation products

* |tis determined for a given thickness, temperature
difference, and mean temperature

* |tis a configuration property
* No air infiltration
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What is R-value? ‘;ﬁ%’,“&sﬂf%cg }VK;)

 Determined experimentally by applying a
temperature difference across a sample and

measuring the heat flux

* All of the heat transfer modes that take place are
included



What about Foams?
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* The cell walls increase the extinction coefficient of the

cavity and eliminate natural convection

* Closed-cell foams can have an initial apparent thermal

conductivity lower than that of air

— Pick a blowing agent that has a low thermal conductivity
— Thermal conductivity of some gases:

_ Thermal conductivity (W/m.K) Boiling point (°C)

Air
Carbon dioxide
Cyclopentane

n-pentane
HCFC-141b

0.0259
0.0162
0.0130
0.0120
0.0100

-195
-56.6
49.2
36
32.1

24
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* There are many reasons for insulating a building

e Heat transfer in uninsulated wall cavities is dominated
by infrared radiation and natural convection

* |Ininsulated walls, air conduction and infrared radiation
remain relevant, but the overall heat flux is much
smaller

e Fiberglass (and foam) insulation is designed and
manufactured to deliver a great insulation product
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What is Building Science ?

Building Science uses the fundamental laws of
physics to understand the response of a
component or whole building to exterior or
interior conditions.

Building Science is an element of Sustainability that

deals with:
o| Energy Flows « Acoustics
f Water Flows * Fire

 Air Flows



System Design Process .NS.GHTS%@

1) One needs to design the
system first.

2) To design the system for
proper performance, one
needs to understand the
LOADS

3) If one underestimates

\ the loads, also material

can fall
4) System failed.
Design Inadequate
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Physics to the Field™
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What if it looks like this at night?
|

g gcience
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Infrared Thermography

29



Steady State to Transient
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Day Time

Solar Radiation

|
Long Wave
Radiation Emission

“r‘é’})
BUILDING SCIENCE A S99,

INSIGHTS \/\&

Day (Drying)

<7

Convection |

/\

Evaporation Enthalpy

<<

Vapor Diffusion

Charging of the Wall’s
Heat Reservoir

Vapor Diffusion

Liquid Transport
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Night Time

Night (wetting)

- " i )

Discharging of the Wall’s
Heat Reservoir

Long Wave
Radiation Emission

Convection |-
Evaporation Enthalpy | ‘s

Vapor Diffusion
Vapor Diffusion

» : % Liquid Transport
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Temperature Field
Moisture Field
Heat Fluxes
Moisture Fluxes
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Hygrothermal Tool: WUFI-ORNL
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Combined heat and moisture
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With an
interior vapor
retarder
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2x6 Steel Stud Wall in Boston

0”, 1” and 2” of XPS

Standard steel stud & Thermally
broken stud

37



TOW: Siding without venting ?ﬁ??&sﬁaﬁé\%a\

Physics t

* Water intrusion
1% behind siding

e TOW class for the
edge of steel:
T4 (2500-5500)

Time of wetness(h)

4500
4000
3500
3000
2500
2000
1500

1000
500

|03I | | \0.4I L | I0.5I | | |
X(m)

38
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Development of Cost-
Effective, Energy Efficient
Steel Framing: Thermal
Performance of Slit-Web

m Steel Wall Studs
’ RESEARCH REFPORT RFPO2.9 1B+
2002 16+
: REVISION 2006
14
2 12-
O 2
L 901
 _— ks
E. .
© :
=
D &
m i it A
m e 16° @ 24° 266 16° 26@ 24°
. Wall Corfiguration (Stud Size and Spacing)
. - O Swel gronre doverived IWoad Fraving i Steel Framing

Slit web studs 17 % better than solid web studs
Overall wall R-10.4 using R-13 Fiberglass (R, -8.9)

Even better performance:

Slit web studs with angles for top tracks (R-11.4)

Better performance achieved with Exterior Foam *°

Oak Ridge National Laboratory & NAHB
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* Understanding the conditions inside the wall adjacent
to the steel stud we can estimate corrosion rates... with
some additional information about the environment

* According to ISO 9223, It is possible to deduce the
corrosivity of an environment by combining TOW
categories with the chloride and sulfur dioxide
categories

40



Corrosion rate

] INSIGHTS \’
Converting these corrosivity ratings into short term corrosionrates (g m#
+ year')according to the following table:

Category Steel Copper Aluminum Zinc
C1 CR <= 10 CR <= 0.9 nealigible CR <= 0.7
Cz 10 < CR <= 200 0.9 < CR <=5 CR == 0.6 0.7« CR <=5
Cs3 200 = CR <= 400 H <« CR <=12 0.6 < CR <=2 5« CR «=15
C4 400 < CR <= 650 12 < CR <= 25 2<CR=<=5 15 < CR <= 30
Cs 650 = LR 75 2 LR 5 < LR 30 < LR

41
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* At class C4 the corrosion rate is high resulting in 3-7 for
Zinc coatings.

— The speed of corrosion of steel is
e 400 to 650 g/m?/year - Class C4

— This would mean that a 16 gauge steel frame might corrode
through in 10- 16 years (C4).

42
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RH(-}

Ml 095
05 I 0.9
Il 085

Il 0.8
0.75
07

0.4 r 0.65
I 0.8
055
R | 0.5
045

,_E___D.S 0.4
> 025
0.2
0.25

0.2 k 0.2
il 015
il I 0.1
il 005

01 fr

11— (I [ T Y I T T O T M e B I ]
0.1 0.2 0.3 0.4 0.5
X(m)
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Standard steel stud (No XPS) ,Bﬁg'i‘&sﬂﬁ-?%@%@

Time of wetness(h)

. 4500

4000
3500
3000
2500
2000
1500
1000
500

Y(m)

0.2 0.3 0.4 05
X(m)

44




Thermally broken steel stud — no XPS, .. somceég;??
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Time ofwetness(h)

. 4500

4000
3500
3000
2500
2000
1200
1000
500

X{m)

0.2 0.3

Slotted web to reduce thermal bridging — Thermally equal to wood stud

)

R <3



Thermally broken steel stud — 1” XP%UILDING SCIENCE@?@
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Physics to the Field™

Dutside Ext Inside

13
|

Time of wetness(h)

4500
4000
3500
3000
2500
2000
1500
1000
500

| I | | | | I | | | | I | | | | I | | | |
0.2 03 0.4 05
X(m)
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Physics to the Field™
|

Qutside Ext Inside

Time of wetness(h)

4500
4000
3500
3000
2500
2000

_
I/
|

1500
1000
500

I 1 L I L | L I L | | I L ]
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e XPS Exterior Foam Insulation helps solve moisture
problems

* Insulation becomes the solution not the problem.

Do not overload the functions of insulation... allow bi-
directional drying...

* New concepts needed to be vetted out with Building
Science.

* XPS and Fiberglass insulation+air sealing system are a
great combination of products that can maximize
Durability

48
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Application # 2: Understanding
The Thermal Choices in Insulation Materials

Use of Dynamic Modeling

Will not address ageing ! or Long Term Thermal Resistance (LTTR)
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Why its important to Question BU.LD.NGSC.ENCE@‘@{J

* R-Value/in of Polyiso is 6.0 to 6.5
 R-Value/in of XPSis5

Conclusion

U

Use Polyisocyanurate
(20 to 30 % Better Is this true ?
Performance)
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 WUFI Hygrothermal Calculations: 2x4 + 1” foam
— XPS versus Polyisocyanurate insulation

— Heat loss through a wall in Chicago XPS = 5/in
PISO= 6/in
Component Assembly North Orientation
Case: OSB+XPS
Exterior _____ ____R13 Interior
XPS Fiberglass Insulation

N

IR T
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O R R RN R R Vinyl Cladding
VU (i | | | II— !— ‘— —l- .

E o Chicago
E -6000 -+

Is this true or should I question this performance issue ?
£ |

12 3 4 5 6 7 8 9 10 11 12

Month
S 4.5 % better
e IIIIII :Iilililili Performance

o For PSIO

-8%
-10%
-12%
-14%
-16%
-18%
-20%

Polyiso vs XPS

1 2 3 4 5 6 7 8 9 10 11 12

Month
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ﬁ Basic Properties ?‘,{i%’f&sﬂ#%é%f\
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Heat Conductivity ASTM C-518

g—_q.AX W
AT | mK 9 AX

A
v

Measurement technique:
Guarded hot plate
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Physics to the Field

ASTM C-518

*Nominal values

for design

taken at mean
temperature 75F
(100F/50F)

*Service conditions
can be very different

Realistic Temperature Range

Mean Temperature (°F)

31 13 S 23 4 9 .77 9 113 131 18

0.10 1
009 |
0.60
008 |
_007 0.30
3
E°'°‘ | 0.40
0.05 |
0.30
004 |
30-03 0.20
0.02
0.10
0.01
0.00 * 0.00

35 25 15 5 S 15 25 3 45 S5 65
Mean Temperature (*C)

Conductivity (Btu-in./hr-ft2-F)

—osa

Framing Lumber

= FG batt

w——(Cellulose

w2 pef ccSPF

o= HD EPS (Std Panel)

— XPS (Box Walls)

w— PIC (Cartridge T8)




Thermal Conductivity and

wanJ@MpPerature

 Thermal conductivity of
Polyisocyanurate goes
up as temperatures go
down (R-value
decreases)

* Data based on
measurements by
Building Science Corp

0.05

0.04

0.03

0.02

0.01

Thermal Conductivity [Btu/h ft°F]

0.00

0

0.025

0.020

0.015

0.010

0.005

Thermal Conductivity [Btu‘h ft°F]

0.000,

s e |
BUILDING SCIENCE A S#:.

INSIGHTS /{0,

20 40 60 80 100 120
Temperature [°F]

-10 10 30 50 70 90 110 130 150 170

Temperature [*F]



Material PrOPerties BUILDING SC|ENCE@;$?

PN
INNOVATIONS FOR LIvinG" I N PS',,!UE )F‘.“!’T(_§ u w
Layer/Material Data ﬁ -
)

e — e 1 i

Laver/taterial Name [Pulyisucyanurate Insulation f(T) *l

bMaterial Data | |nfg

Basic Yalues

Hygrothermal Functions
Moaoisture Storage Function

Bulk density [kgim?] 2B.5 Liquid Transport Coefficient, Suction
: Liquid Transport Coefficient, Redistribution
F ¥ 0.94 o . .
DrDS_I_ty [rnfrn] : Water Wapour Diffusion Resistance Factor, maoisture-depend
Specific Heat Capacity, Dry [kgk] 1470.0 Thermal Conductivity, moisture-dependent

| L . Thermal Conductivity, temperature-de
Th | Conductivity, Dy, 10°C K 0,028
l Brma] Lonductivity. Uy [Wimk] Enthalpy. temperature-dependent
fl Wv'ater Wapour Diffusion Resistance Factor [-] 51.5
|| [ Approximation Parameters Graph | EditTable il |
[ Generate |
N Temp. Therm. Cond.
o.
[C] [vimk] |
1 -15.0 0,074 e
L
2 -9.0 0,07z bl
3 &0 0,065
Typical Builtln Moisture [kgi/m®] 0.5 p £ 0.042
Layer thickness [m] 0.0254 5 10 0.028
B 15.0 0.0z2z -
-Insert
7 20.0 0.023 -

| Impart... | o 0K

| Export... | X Abart |

Faste into katerial Databhase ‘

)
m
o
-
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 WUFI Hygrothermal Calculations: 2x4 + 1” foam
— XPS versus Polyisocyanurate insulation

— Heat loss through a wall

Component Assembly North Orientation
Case: OSB+XPS

Exterior Interior
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e Chicago

* Joronto
* Minneapolis
e Miami



Heat flux through the wall
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2X4 + 1in

Heat Flux, W/m?*
o

10|
12 F

14 |

16

e XPS

Polyiso hourly

s P olyiso

XPS hourly

2013-10-01

2014-10-01

Date

2015-10-01

EES————————
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Two Year Analysis Chicago

2000

0 - T
-2000 +—
-4000 -+
-6000 +
-8000

I I I I..I - I - IIII I I
—
— S
—

m Polyiso

-10000 +—

Heat Loss, Wh/m?

2X4 + 1in
-12000 m XPS

-14000

-16000

Dec
Jan Month
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20%
L 15% -
>
[7)]
>
3
S, 10% —
©
Q.
Q
(&)
o 5% |
@
=
(=)
°\° O% —_— | S | —_—— | — | ! | I | | l | ! | ! | — | N—]
5% .
1 2 3 4 5 6 7 8 9 10 11 12
Month

Jan Jun Dec
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2000 2000
— (o] —
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Physics to the Field™

Brick Wall with R5 (XPS) exterior insulation

| 0.37047 043701 350334 143213 |[nches

Layers from Outside

— -Brick

Air Inside
-XPS

-OSB

-Fiberglas
. %\'\ -Vapor retarder
---------- -Interior Gypsum

Board
All assemblies to be simulated;
Brick — R5; Brick — R7.5; Brick — R10; Brick — R15
Vinyl- R5; Vinyl- R7.5; Vinyl- R10; Vinyl- R15

- All 8 cases are simulated once with XPS and once with Polyiso
—> total amount of simulation per city = 16

70



1D comparison — heat flux through a single = scmNcs@
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Input parameters for the 1D simulations
-> Further input parameters

- Simulation period = 2 years - average values are used for comparison
- Inclination = 90°

- Driving Rain coefficients = low (short building)

- Orientation = North - extreme cases for cold temp. (low sun irradiation)
- Initial relative humidity of materials = 80%

- Initial temperature of materials is 68°F

- Weather file type used = Ashrae Year 1
- Thickness of exterior insulation layer is always adapted to the R-value

- XPS and Polyiso layer have always the same R-value but do not have
the same thickness!!!
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Cities

Albuquerque
Atlanta
Baltimore
Bismarck
Boulder
Burlington
Calgary
Chicago
Elko
Fairbanks
Honolulu
Houston

International Falls

Key West
Miami
Minneapolis
Sacramento
San Francisco
Seattle
Toronto
Tucson
Vancouver

Comparison of all Cities

wu
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%
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Savings with XPS in Comparison to PIR [% of Btu/sqft*a]

Brick - R5 Brick - R7.5

4,96%
3,52%
4,97%
9,32%
7,08%
7,14%
10,77%
8,94%
8,18%
12,86%
-5,53%
1,13%
11,83%
-3,84%
-4,17%
9,90%
-1,15%
-2,73%
1,76%
8,49%
-2,52%
3,26%

6,63%
4,61%
6,50%
12,86%
9,50%
9,61%
14,93%
12,29%
11,04%
18,13%
-6,74%
1,52%
16,62%
-5,06%
-5,21%
13,71%
-1,29%
-4,05%
1,89%
11,51%
-3,26%
3,89%

Brick - R10
7,82%
5,27%
7,53%
15,78%
11,27%
11,49%
18,45%
14,99%
13,19%
22,77%
-7,58%

1,63%
20,73%
-5,98%
-5,99%
16,88%
-1,54%
-5,22%

1,71%
13,86%
-3,93%

4,14%

Brick - R15
9,15%
5,77%
8,55%
19,99%
13,42%
13,87%
23,86%
18,80%
15,86%
30,23%
-8,59%

1,44%
27,21%
-7,20%
-7,00%
21,58%
-2,16%
-7,06%

0,98%
17,01%
-5,10%

4,07%

Vinyl -
5,58%
3,95%
5,55%
9,94%
7,93%
7,73%

11,45%
9,51%
8,99%

13,42%

-6,21%
1,29%

12,42%

-4,00%

-4,44%

10,45%

-1,02%

-2,39%
2,28%
9,15%

-2,29%
3,89%

R5 Vinyl-

R7.5
7,51%
5,30%
7,31%

13,76%

10,67%

10,44%

15,86%

13,12%

12,19%

18,93%

-7,32%

1,91%
17,41%
-5,23%
-5,41%
14,50%
-0,97%
-3,66%

2,56%
12,41%
-2,90%

4,68%

Vinyl -
8,87%
6,14%
8,50%
16,88%
12,66%
12,50%
19,58%
16,02%
14,56%
23,75%
-8,08%

2,19%
21,71%
-6,13%
-6,15%
17,86%
-1,08%
-4,82%

2,47%
14,95%
-3,50%

5,02%

R 10 Vinyl-

R 15
10,36%
6,78%
9,67%
21,34%
15,02%
15,07%
25,24%
20,06%
17,47%
31,49%
-8,99%
2,12%
28,44%
-7,34%
-7,12%
22,79%
-1,62%
-6,71%
1,76%
18,31%
-4,63%
4,99%

Average
7,61%
5,17%
7,32%
14,98%
10,95%
10,98%
17,52%
14,22%
12,68%
21,45%
-7,38%

1,65%
19,55%
-5,60%
-5,69%
15,96%
-1,35%
-4,58%

1,93%
13,21%
-3,52%

4,24%
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Savings with XPS in comparison to PIR [1D; Btu/sqft*a]
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What have we learned INSIEHTS Ve

e Thermal insulation should be evaluated with in-situ
temperature ranges

* Using Design value or any other “German” way
does not help.

* Now | know the critical importance of temperature
dependencies and why 1 inch of R-5 XPS insulation
performs better than 1 inch R-6 Polyisocyanurate in
mixed and cold climates.
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Questions?

This concludes the American Institute of Architects
Continuing Education Systems Program

Achilles N. Karagiozis
740 404-9383
achilles.karagiozis@owenscorning.com

' BUILDIN&SCIENCEQ : g N

Marcus V. Bianchi
® 720 258-6822
marcus.bianchi@owenscorning.com
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