HVAC for Efficient Homes

Andy Shapiro Energy Balance, Inc.

Objectives

- Learn the process of selecting mechanicals for homes
- Understand the system selection matrix, a tool for assisting system selection
- Understand the balancing of system costs with owners goals and annual energy cost
- Learn how systems were selected for 7 projects

My Objective

• For you to learn!

SO ASK QUESTIONS AS WE GO

Why Bother? The perfect storm

Credit Where Due and Excellent Resource

See John Straube's presentation at Better Buildings By Design 2013

http://www.efficiencyvermont.com/docs/for_partners/bbd_presentations/ 2013/Heating-Cooling-and-Ventilating-Very-Low-Energy-Homes.pdf

What kind of homes?

- Very, very low load (Passive House)
- Micro-load/net zero ready
- Efficient
- What size? Up to about 2,000 sq.ft.

Understanding we will need:

 Load versus energy consumption

How many BTU's/yr (load)

How much fuel (consumption)

Understanding we will need:

- Demand peak
 heating or cooling load
 - How much heating system output is required for the coldest hour?
 - How much cooling system output is required from the air conditioning during the hottest hour?

What level of enclosure are we talking about? Peak heating loads of:

- Very, very low load houses
 - 6 15 kBtu/hr or 3 8 Btu/sq.ft-hr
- Micro load houses
 - 20 25 kBtu/hr, or 10 15 Btu/hr-sq.ft.
- Efficient Houses
 - 30 35 kBtu/hr, or 18 20 Btu/hr-sq.ft.

Thanks to Rheannon DeMond of Bensonwood for analysis and graph

What level of enclosure are we talking about?

- PH: R-7 / 30 / 50 / 80
 - with <0.6 ACH 50 (very very tight!)</p>
- Micro-load: R-5 /20 /40 / 60
 - with ~1-1.5 ACH50 very low air leakage
- Efficient : R-4 / 15 / 30 / 40
 - with ~2 ACH50

(Windows / earth contact / walls / roof + air leakage)

What mechanical systems do we need?

- Heating
- Cooling
- Hot water
- Ventilation

How to pick systems?

- Clearly define goals
- What are the needs?
- What are the opportunities?
- What are the constraints?

Clear goals: why bother?

Clear goals

- "Lowest possible" energy consumption
- Net zero
- Zero carbon
- Low operating cost
- Low CO2 emissions
- Low installed cost
- High indoor environmental quality

What are the needs?

- Point source or zoned heating?
- Is AC needed?
- Granularity of temperature control (how much zoning?)
- How tight does temperature control need to be?
- How big are the loads?
 - Heating, cooling, hot water, ventilation

What are the opportunities?

- Is there natural gas?
- All electric?
- PV powered?
- Is there solar access?

What are the constraints?

- Fuel availability
- Hard water
- Shaded site
- Allergies

Fuel options - Cost

Fuel	Unit	Cost per Unit	MMBtu per Unit	Average Seasonal Efficiency	Delivered MMBTU per Unit	Cost per MMBtu After Combustion
Natural Gas	therm	\$1.30	0.10	90%	0.090	\$14
Cordwood	cord	\$220	22	60%	13	\$17
Wood Pellets	ton	\$250	16	85%	14	\$18
Electricity HP	kWH	\$0.15	0.0034	250%	0.0085	\$18
Oil	gallon	\$4.00	0.14	82%	0.11	\$35
Propane	gallon	\$2.90	0.092	90%	0.083	\$35
Electricity	kWh	\$0.15	0.0034	100%	0.0034	\$44

Fuel options - CO2 emissions

Fuel	Lbs CO2 per unit of energy	Lbs CO2 per MMBtu of load at site	Lbs CO2 per MMBtu primary energy [2]
Natural Gas	16.5	165	181
Cordwood	42	3	3.5
Wood Pellets	211	16	17
Electricity HP	1.200	-	155
Oil	4.6	189	208
Propane	2.6	172	189
Electricity	1.2	-	387

General Principles for Mechanicals

- Capture waste heat flows
- Humans need fresh air
- Use renewables
- All burners sealed combustion
- Meet owners' goals
- As simple a system as meets needs

 As few burners as makes sense
- Don't over-invest to meet small loads

Drain water heat recovery

Can save 30% or more of hot water

Lay out house for it and do it where there is a good shower load!

Drain-water Heat Recovery

Balanced Ventilation System: Fresh air to where you live

Ventilation

Just do it! Price of living in a box...

Heat Recovery Ventilation

How is it done?

Fixed Plate

Passive solar or sun tempering Just do it when you can!

What are the Options??

- Heating
- Cooling
- Hot water
- Ventilation

Heating Sources

- Air source heat pump
- Ground source heat pump (water-water or water-air) -- not "geothermal"
- Solar thermal
- Biomass wood stove; pellet stove or boiler
- Natural gas options:
 - Small furnace
 - Small boiler, hydronic distribution
 - Combo DHW and fan-coil/radiant/low-temp radiator

Point source or distributed heat?

- Micro load, compact design *can* work with point source heating, depending on particulars:
 - Heat on lowest floor
 - No sit-down office spaces with closed doors unless on floor above heat
 - Tolerance of temperature variations in space

Point source or distributed?

- Point source won't work if
 - House not micro-load or better
 - System provides heating and cooling on two floors
 - Heating source on upper floor
 - Spread out design
 - Need zones
 - Need tight temperature control
 - Doesn't work as well for cooling

Cooling Sources

- Air source heat pump
- Ground source heat pump (water-water or water-air)

Passive cooling assumed

Hot Water Options

- Solar with electric backup
- Heat pump water heater/electric
- Zone of water-water GSHP
- If natural gas, condensing water heater or zone of boiler

Usually a good idea: Drainwater heat recovery

Hot Water Options

 Condensing gas water heater, sealed combustion

Hot Water Options

Heat pump water heaters

- •COP 1.5 to 2
- •Where does heat come from?

- Watch for noise
- What is system lifetime?
HP water heaters: COP lower with lower usage

Figure 2. Efficiency and Electricity Usage as a Function of Hot Water Demand

Heat Pump Water Heaters

in New and Existing Homes

Steven Winter Associates, Inc July 2011

http://www.swinter.com/Collateral/Documents/English-

US/Heat%20Pump%20Water%20Heater%20Draft%20Measure%20Guideline.pdf

Solar Hot Water or HPWH?

4500 kWh/year load

\$4 per Wp PV cost

1.50 HPWH COP 70% SDHW fraction

Solar Hot Water or HPWH?

4500 kWh/year load

\$4 per Wp PV cost

1.50 HPWH COP

70% SDHW fraction

Compare on net-zero basis

	Installed	kWH		Cost of			
	Cost	remaining	Wp PV's	PV's	Gross cost	Tax credit	Net cost
SDHW	\$ 7,500	1,200	1,091	\$ 4,364	\$ 11,900	\$ 4,700	\$ 7,200
HPWH	\$ 3,000	2,000	1,818	\$ 7,273	\$ 10,300	\$ 2,900	\$ 7,400

Solar Hot Water or HPWH?

4500 kWh/year load

\$4 per Wp PV cost

1.50 HPWH COP

70% SDHW fraction

Compare running on grid electricity

							A	Innual
	Installed	kWH					ор	erating
	Cost	remaining	Та	x credit	N	et cost		cost
SDHW	7,500	1,200	\$	3,000	\$	4,500	\$	180
HPWH	3,000	2,000	\$	-	\$	3,000	\$	300

HRV or ERV?

- In low-load, tight homes need to remove moisture in winter, so HRV
- When air conditioning is signficant, want to exclude outside moisture, so ERV

How to Decide on Systems Mix?

- Calculate peak load and annual load (modeling of heat, hot water, cooling)
- System selection matrix
- System cost matrix installed cost and operating cost
 - Hot water often as big as heating, so need to think about both

How big is equipment?

• Peak Load – spreadsheet works fine (cooling peak loads a little trickier)

Building name	Ν	S	Е	W	Total	R-value	UA
CEILING (sq.ft.)	4,000				4,000	60	67
Gross walls, sq.ft.	720	1092	488	654	2,954	40	
WALLS (sq.ft.)	540	975	398	584	2,497		
WINDOWS	132	117	90	30	369	5.0	74
skylight	15				15	3	
door glasswindows	33				33	5	7
DOORS solid (sq.ft.)				40	126	4	32
Slab perimeter	12				12	0.16	2
foundation perim	158				158	0.18	28
crawl perimeter	97				97	0.13	13
INFILTRATION (Volume)	69,000				Total ACH	0.10	124
		Ins	side design	68			346
		Outs	side design	-20			
		Vermont	peak dT	88			
			peak load	D. (1			
			30,419	Btu/hr			

How much energy will it use?

- Annual Energy Use
 - Need a simple model -- I use Energy-10
 Model needs to properly handle internal and solar gains
 - Heat
 - Hot water
 - Plug loads and other electricity

Careful load analysis

System Selection

Efficient Home, NE UAssumptions							
HVAC Systems	Super-insulated envelope	20,000 Btu/hr peak heating load					
24-Feb-13	Heat recovery ventilation	Compact floorplan					

Mechanical System

Option	Air Source Heat Pump (ASHP), point source	Ground Source Heat Pump (GSHP) Water to-air	Gas furnace/split AC (conventional)	Gas water heater with fan coil, no AC
Heat	ASHP wall-mount point source delivery	Ducted	Ducted	Ducted
cooling	ASHP wall-mount point source delivery	Ducted	Ducted	no AC
hot water	Solar+electric backup or HPWH or resistance	Solar+electric backup or HPWH or resistance	Gas tank-type typical efficiency	Gas tank-type, sealed combustion, high efficiency
Solar DHW # 4x8	2/80/ Wagener	2/80/ Wagener		
collectors/tank	Secusol drainback	Secusol drainback		
Biomass optional	Wood stove			

Why ASHP (MR)

- 1 There is no combustion and no need for a chimney or vent.
- 2 In space conditioning applications, heat pumps can provide heating and cooling.
- 3 The equipment installation costs and the operating costs compare favorably with other options.
- 4 Heat pumps are a natural partner to solar electric systems to achieve zero-net-energy buildings.

System Selection

Option	Air Source Heat	Ground Source Heat	Gas furnace/split	Gas water heater
	Pump (ASHP), point	Pump (GSHP) Water-	AC (conventional)	with fan coil, no AC
	source	to-air		
Advantages	Can be powered with	Can be powered with	Where gas is cheap	Where gas is cheap
	renewable electricity	renewable electricity	and available may	and available may
			make sense;	make sense;
	Simple: one installer	highest efficiency	conventional trades	Only one burner
			for HVAC	
	less costly than	lowest peak utility	EC motor to reduce	Can add AC if
	ground source	load	energy use of fan	ducting sized for it
Disadvantages	Fans make some	More expensive	Requires fossil fuels	Requires fossil fuels
	noise, though			
	designed to minimize			
	around or well mount	roquiros coordination		roquiroc coroful
	ground of wait mount	requires coordination	requires VERT	requires carerui
	condensor outside	of trades	careful design to	design to avoid noisy
			avoid noisy system	system
		design required	hard to find small!	
		requires earth contact	test for hard water for	test for hard water for
		installation	instantaneous	heat exchanger
		Fans make some	Not for super low load	unconventional,
		noise	homes	design required!

System Installed Cost

Efficient Home, NE US PRELIMINARY HVAC cost estimate

	Air	Source	Gro	und Source		Gas	Ga	as water
	Heat Pump		Heat Pump		furnace/split		heat	er with fan
	(ASH	P), point	(GS	HP) Water-		AC	coi	l, no AC
	SC	ource		to-air	(cor	ventional)		
Item Heat/cool installed cost	\$	4,000	\$	18,000	\$	6,500	\$	4,000
Ducting		\$	2,000	\$	2,000	\$	2,000	
chases for ducting not inc	luded r	nere			•			
ERV	\$	2,500	\$	2,000	\$	2,000	\$	2,000
Subtotal Heat	\$	6,500	\$	22,000	\$	10,500	\$	8,000
Total with 12% Mark-u	\$	7,300	\$	24,600	\$	11,800	\$	9,000
Tax credit 30%			\$	(7,400)				
TOTAL Heat	\$	7,300	\$	17,200	\$	11,800	\$	9,000
Water heat net cost	\$	4,700	\$	4,700	\$	2,000	\$	3,000
TOTAL heat + hot water	\$	12,000	\$	21,900	\$	13,800	\$	12,000

System Operating Cost

Efficient Home, NE US Energy Consumption and Cost

	kWh/yr	MMBtu/yr
Annual Heat load	9,000	31
Annual cooling load	4,000	
Annual DHW load	4,000	14

Energy Cost	
electricity, \$/kWh	\$ 0.15
natural gas, \$/therm	\$ 1.30

System Operating Cost

System efficiency	
ASHP, heating	250%
GSHP, heating	400%
Gas furnace, condensing	90%
High efficiency water heater	85%
conventional water heater	60%
electric water heater	95%
ASHP cooling COP	4.50
GSHP cooling COP	6.50
Split system cooling COP	4.00

System Operating Cost

Efficient Home, NE US Energy Consumption and Cost

Heating/Cooling	Air Source Heat	Ground Source	Natural Gas	Natural gas water
	Pump (ASHP),	Heat Pump	furnace/split AC	heater high
	point source	(GSHP) Water-to-	(conventional)	efficiency with fan
		air		coil, no AC
Heating kWh/yr	3,600	2,250	300	300
Therms gas/yr	-	-	341	361
Cooling kWh/yr	889	615	1,000	
	Solar + elec	Solar + elec	gas conventional	gas high efficiency
Hot Water Only	backup	backup		
kWh consumed	1,389	1,389	-	-
Therms gas consur	-	-	228	161
TOTAL				
kWh consumed	5,878	4,255	1,300	300
Therms gas consur	-	-	569	522
Operating cost	\$ 880	\$ 640	\$ 930	\$ 720

System Installed and Operating Cost

Efficient Home, NE US Summary of Installed and Operating Costs for Mechanicals

	Air Source Heat	Ground Source	Natural gas	Natural gas water
	point source	(GSHP) Water-to-	(conventional)	efficiency with fan
		air	(,	coil, no AC
	Solar + elec backup	Solar + elec backup	gas conventional	gas high efficiency
1st Yr Operating Cost	\$880	\$640	\$930	\$720
Installed Cost	\$12,000	\$21,900	\$11,800	\$9,000

Examples

- Colin's House
- Randy's House
- Bensonwood Varm
- Ellenbogen house passive/ASHP/PV/SDHW
- Pill Maharam House passive/GSHP heat and DHW
- White Pine CoHousing passive solar/wood pellet fired mini-district heating system some solar DHW and PV
- Saunders Gilsum house passive solar/large active solar for heat and DHW, electric backup

Colin's house

- 1500 sq.ft.
- 21 kBtu/hr peak heat load (VT)
- 14 Btu/hr-sq.ft.

Goals

- Low-cost construction
- Inexpensive to operate

Colin's house

- Sun tempered
- Wood stove
- Two radiant zones
- Instant water heater as small boiler

HRV

Colin's house

Mechanicals Pro's

- Inexpensive system, tolerant of hard water
- Zoned radiant floor
- One burner, sealed combustion
- Compact

Cons

- Some system complexity
- Unusual design
- Propane cost fluctuation
- Fossil fuel = CO2 emissions

Randy's house

- 2,400 sq.ft.
- 27 kBtu/hr peak heat load (VT)
- 11 Btu/hr-sq.ft.

Goals

- Low-cost system
- Inexpensive to operate
- Renewable ready
- Single zone

Randy's house

- Sun tempered
- Wood stove
- Single zone
- Air source HP, point source or ducted
- Resistance hot water
- HRV

George House			1,500	kWh/year load			This is low usage.						
DHW comparison			\$ 4.00	per Wp PV cost			Might get better, not sure						
			2.25	HPWH COP									
			70%	SDHW fraction									
Compare on net-zero basis													
	Installed		kWH	Wp PV's	Cost of								
	Cost		remaining	required		PV's		Gross cost		Tax credit		Net cost	
Solar DHW	\$	7,500	450	409	\$	1,636	\$	9,100	\$	3,700	\$	5,400	
Heat Pump DHW	\$	3,500	667	606	\$	2,424	\$	5,900	\$	1,000	\$	4,900	
Electric DHW	\$	1,000	1,500	1,364	\$	5,455	\$	6,500	\$	2,200	\$	4,300	

Randy's house

Mechanicals Pro's

- Simple system
- Wood stove provides primary heat
- Renewable-ready

Cons

- Bank not super happy with point source heat (may have to duct it)
- One zone for three floors expect it be fine owners are on board with variation
- CO2 emissions until PV's installed

Bensonwood Unity Homes Varm

- 18 kBtu/hr peak heat load (VT)
- 10 Btu/hr-sq.ft.

Goals

- Low-cost system
- Inexpensive to operate
- Renewable ready
- Single zone with even temperature throughout for heat and AC

Bensonwood Varm

- Sun tempered
- Single zone
- Air source HP, ducted, one zone
- HRV
- Electric hot water, optional solar

Bensonwood Varm

Pro's

- Simple systems
- Renewable-ready
- Inexpensive systems ~\$15k
- Ducting gets AC upstairs

Cons

- One zone for two floors expect it be fine
- CO2 emissions until PV's installed

Ellenbogen house

- 1,800 sq.ft.
- ~30 kBtu/hr peak heat load (VT)
- 16 Btu/hr-sq.ft.

Goals

- Near net zero,
- Burn some wood
- Zoned

- Sun tempered
- Wood stove
- Air source HP, 3 zones
- Solar hot water
- HRV
- 7.35 kW PV's

Ellenbogen house

Pro's

- All renewable fuel
- Wood stove for recreational amount of wood and backup in rural location
- Zoned

Cons

Cost

Pill - Maharam House

- 2,800 sq.ft.
- 28 kBtu/hr peak heat load (VT)
- 10 Btu/hr-sq.ft.

Goals

- Net zero
- Zoned

Pill - Maharam House

- Passive solar
- Wood stove
- Ground source HP,
 open loop
- 3 zones
- GSHP hot water
- HRV
- 10 kW Bergey wind generator

Ground source heat pumps (water-to-water)

GSHP performance

Pill - Maharam House

Pro's

- All renewable fuel
- Radiant heat
- Zoned heat

Cons

- System complexity *many* devils in *many* details
 - Design
 - Execution
 - Maintenance
- Limited DHW temperature
- Coordination of trades
- Cost

Goals

- Zero carbon, but not expensive to build
- Zoned
- Billable
- 1,200 1,800 sq.ft.
- ~20 kBtu/hr peak heat load (VT)
- 11 16 Btu/hr-sq.ft.

- Passive solar
- Wood pellet fired district heating system for heat and hot water, metered
- HRV
- Some solar hot water
- Some PV
- Some woodstoves

Pro's

- Local, renewable fuel
- Wood stoves provide back-up and happiness
- Each unit billed for usage
- One burner for 7 buildings
- Inexpensive: ~\$7k per house plus distribution in house of \$4 – 7k

Cons

- System complexity in design
- Standby and piping losses ~10 20%
- Bi-weekly cleaning (20 40 minutes)

Saunders' Gilsum St House -- Large solar thermal for heat and hot water

Goals

- Almost all thermal from solar
- Zoned
 - 1,870 sq.ft.
 - 19 kBtu/hr peak heat load (VT)
 - 10 Btu/hr-sq.ft.

Saunders' Gilsum St House -- Large solar thermal for heat and hot water

- Large solar array 240 sq.ft for heat and hot water – *drainback!*
- Hydronic radiant slab in basement + EC fan-coil first floor
- Electric backup
- HRV

Large active solar thermal for heat and hot water + PV backup

Saunders Gilsum house

Mechanicals Pro's

Renewable fuel

Cons

- System complexity
- Electric backup expensive if energy use not managed well
- Not inexpensive ~\$30k

General Principles for Mechanicals

- Capture waste heat flows
- Humans need fresh air where they live
- As simple a system as meets needs
 - As few burners as makes sense
 - Don't over-invest to meet small loads
- All burners sealed combustion
- Use renewables
- Meets owners goals

Thank you!

Questions??

andy@energybalance.us

